

Solving Process Safety Issues with CHEF Calculation Aid

Enter Name Here

kaypear About CHEF

- Chemical Hazard Engineering Fundamentals Screening Tool (CHEF)
- Published by Center for Chemical Process Safety (CCPS)
- Requires minimal inputs to obtain the results
- Source models, vapor dispersion, explosion, and impact assessments can be done
- Free excel and can be downloaded from CCPS
 - https://www.aiche.org/ccps/resources/tools/risk-analysis-screening-tool-rast-and-chemical-hazard-engineering-fundamentals-chef/rast-user-and-chef-manuals

The Following Manuals are Available for RAST Users:

- RAST User Manual V3.0
- RAST User Manual (Chinese)
- CHEF Calculation Aid V4.0

kaypear Example-1 - Periodic reactor internal coil failure

- An internal coil is used to cool reactor contents where a desired reaction is completed at
 - atmospheric pressure
 - operating temperature of 250 °C
 - thermic fluid in the jacket is closed
- During the reaction stage (stage prior use of internal coil)
 - the return line of the internal coil is closed, however,
 - the vent line is open and discharges to the top of the building with a weather hood.
- Normal cooling water is used for the cooling process.

Example-1 - Periodic reactor internal coil failure

- Once the reaction is complete
 - an internal coil is used for reducing the temperature of the reactor contents
- Interview Approximately 10 reactors out of which there are 2 or 3 reactor internal coil failure per year
- Failures range from pin hole leaks to a guillotine break across the welded sections of the pipe
- In 2020 HAZOP, reactor node considered an internal failure of the internal coil but considered the relief system in the reactor as a safeguard

elosed

CHEF Screening tool to address the internal coil failure

- Design pressure of the internal coil-5 $kg_{f}/cm2$ (g)
- Design pressure of the reactor $-3 \text{ kg}_{\text{f}}/\text{cm2}$ (g)
- Volume of the reactor-10 m³

Vapor pressure of water - 39.5 kg_f/cm2 (g) at 250 $^{\circ}$ C

Operating Temperature

	Clear Inputs								
Physical	Inputs for on Process Inputs: Input Value Temperature, T 250 Privisical State of Contents Liquid Estimated Vapor Pressure at Specified 1	e or more chemical compo <u>Input 6nits</u> 250 Assumed liquid if blar Temperature: 3869.175	nents must b C nk kPa gauge	e entered in :	d in shaded "yellow" fields if Table Data Value is no Note that Weight Fraction, Molecular Weight and physical State of Contents, must be ent			nd Ind	Weight raction
State	Chemical Inputs: <u>Table Name</u>	Input Name	Wt Fraction	Second Liq Phase	Mol Wt D-1	<u>or vvt Input</u> <u>Value</u>	Mol Wt for Equation	1	
Chemical Input	Water		1		18.02		18.02	_	
December 3.								_	_

Kaypear CHEF Screening tool to address the internal coil failure

- Design pressure of the internal coil-5 $kg_{f}/cm2$ (g)
- Design pressure of the reactor $-3 \text{ kg}_{\text{f}}/\text{cm2}$ (g)
- Volume of the reactor-10 m³

- Volume of internal coil 0.25 m³
- Vapor pressure of water 39.5 kg_f/cm2 (g) at 250 °C

Deficiencies and failure modes Identified

- The cooling water is of low quality that will result in scaling of the pipe and these deposits can result in further deterioration of piping
- The pipe can catastrophically rupture
- Estimate the hazard distances due to an overpressure excursion
- Thermal stress cracking when cooling water is introduced as part of the cooling process (Temperature above Leidenfrost temperature > 200 °C)
- Vibration fatigue due to overpressurization during cooling
- Process Hazard Analysis ranks the blocked cooling water outlet with a low consequence

Estimate the hazard distances

Estimate the hazard distances

- CHEF calculation aid helps in estimating process safety consequence
- A useful tool to determine thermo-physical properties
- Damage mechanisms were highlighted and requested team to revisit the design or find other suitable alternatives to prevent or mitigate internal coil failures

- 2-propanol, commonly referred as IPA, was subject to many accidents in 2020. Many small and medium scale chemical industries were affected due to either direct or indirect manufacturing of sanitizers
- The following example shows how the CHEF calculation aid was used for storage and handling of IPA
- An existing storage tank was re-purposed for their specific application

Example-2 – IPA Storage Tank

For the second stateEstimating Internal deflagrationInternal DeflagrationInternal DeflagrationInternal DeflagrationBuilding or head space

- 50 m³ storage tank volume
- Average void space volume of 15 m³

Nearby high foot traffic area.

Clear Inputs	explosion								
Required In	outs are Shaded	d "Yellow"							
STEP 1 - Select Type of Explosion and Distance of Interest									
Type of Explosion:	Building	g or Head Spac							
Input Units may be changed - Input Values in "blue" will be converted to appropriate equation units									
	Input Value	Input Units	Equation Input	Equation Units					
Distance of Interest, X	15		15	m					
STEP 2 - Enter									
_xplosion inputs:	Input Value	Input Units	Equation Input						
Burst Pressure (gauge), P _B - P ₀				kPa gauge					
Equipment Volume, V _{Equip}				cu m					
Burst Temperature, T _{Burst}				С					
Fraction Liquid Level (if Superheated), F	F								
Flash Fract during Depressurization, F_V		1							
		•							
STEP 3 Enter Quantity and Heat of Reaction for Condensed Phase Explosion Skip Step									
Condensed Phase Detonable Inputs:	Input Value	Input Units	Equation Input						
Mass of Material, M				kg					
Heat of Reaction per Mass, ΔH_R				kJ/kg					
				-					

(f) kaypear

Estimating Internal deflagration of IPA storage tank

Estimating Internal deflagration of IPA storage tank

- CHEF Calculation aid is versatile and essential tool for Process Safety and Risk Management professionals.
- List of 222 chemicals and pre-defined process safety models
- Inputs are clearly highlighted and can override as per use case
- Requires limited process safety information for screening purposes
- Identify the hazards and potential consequence to troubleshoot process safety issues

